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Density functional theory and demixing of binary hard-rod–polymer mixtures

P. Bryk*
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A density functional theory for a mixture of hard rods and polymers modeled as chains built of hard tangent
spheres is proposed by combining the functional due to Yu and Wu for the polymer mixtures@J. Chem. Phys.
117, 2368~2002!# with Schmidt’s functional@Phys. Rev. E63, 50 201~2001!# for rod-sphere mixtures. As a
simple application of the functional, the demixing transition into polymer-rich and rod-rich phases is examined.
When the chain length increases, the phase boundary broadens and the critical packing fraction decreases. The
shift of the critical point of a demixing transition is most noticeable for short chains.
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The addition of the nonadsorbing polymer to a monod
perse suspension of colloidal particles can lead to a ph
separation due to depletion interactions@1# arising from a
tendency of the system to reduce the volume excluded to
polymer coils. One of the simplest theoretical models tak
into account this phenomenon is the so-called Asaku
Oosawa~AO! model of colloid-polymer mixtures@2# where
the ideal polymer coils~modeled as spheres! can freely in-
terpenetrate each other but the polymer-colloid and collo
colloid interactions are of the hard sphere type. Initial stud
of such systems focused on the bulk phase behavior@3,4#,
however recently developed density functional theory~DFT!
for the AO model@5# initiated investigations of inhomoge
neous colloid-polymer mixtures. When brought close to
hard wall, such mixtures may develop a sequence of laye
transitions in the partial wetting regime prior to a transiti
to complete wetting@6,7#.

Similar mechanism of fluid-fluid phase separation can
found if other mesoscopic particles such as hard rods
used as depletant agents. Bolhuis and Frenkel~BF! @8# used
computer simulations and free volume theory@4# to study
bulk phase behavior of mixtures of colloidal hard sphe
and vanishingly thin hard rods. They found a surprising
good agreement~cf Fig. 3 in Ref.@8#! between the free vol-
ume theory and Gibbs ensemble Monte Carlo simulatio
Although the vanishing thickness and volume constitut
significant simplification~e.g., it rules out the isotropic
nematic transition!, the BF model is relevant for some ex
perimental systems, e.g., mixtures of silica spheres and s
coated bohemite rods@9,10#. In order to describe inhomoge
neous hard-rod–hard-sphere systems Schmidt@11# proposed
a DFT which in its structure closely resembles the AO fun
tional @5#. The functional for the BF model incorporates th
exact low-density limit and yields the same equation of st
as in Ref.@8#. Moreover, entropic surface phase transitio
found previously in model colloid-polymer mixtures close
a hard wall were also recently encountered in hard-rod–h
sphere mixtures@12#. This further demonstrates deep sim
larities between the two models.
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The aim of the present work is to construct a function
for a mixture of vanishingly thin hard rods and polymer
Such systems can be regarded as simple microscopic mo
of the liquid crystal-polymer mixtures. The functional is co
structed by combining Schmidt’s functional for the B
model with the Yu and Wu@13# functional for mixtures of
polymeric fluids. To make this conjecture we take the adv
tage of the fact that both functionals underlie the fundam
tal measure theory~FMT! of Rosenfeld@14#. As a simple
application we investigate bulk phase diagrams result
from the proposed theory.

Consider a mixture of hard, vanishingly thin needles~spe-
cies N) of length L and polymers~speciesP) modeled as
chains composed fromM tangentially bonded hard-spher
segments of diameters. The hard-sphere monomers build
ing up the chains are freely jointed, i.e., they can adopt
configuration as long as it is free of the intermolecular a
intramolecular overlap. The interaction potential betwe
needlesVNN50 for all separations, while the pair potenti
between a polymer segment and a hard rod,VPN , and be-
tween two polymer segments,VPP , is of a hard-core type
i.e., is infinite if a pair of objects overlap and zero otherwis
The grand potential of such system as a functional of lo
densities of polymersrP(R) and needlesrN(r ,v) can be
written as

V@rP~R!,rN~r ,v!#

5Fid@rP~R!,rN~r ,v!#1Fex@rP~R!,rN~r ,v!#

1E dRrP@~R!~Vext
(P)~R!2mP!#

1E drE dv

4p
rN~r ,v!@Vext

(N)~r ,v!2mN#, ~1!

whereR[(r1 ,r2 ,•••,r M) denotes a set of coordinates d
scribing the segment positions,v describes the orientation o
the rod,Vext

(P)(R), mP , Vext
(N)(r ,v) and mN are the external

and the chemical potentials for polymers and rods, resp
tively. The ideal part of the free energy is known exactly
©2003 The American Physical Society01-1
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bFid@rP~R!,rN~r ,v!#

5bE dRrP~R!Vb~R!1E dRrP~R!$ ln@LP
3rP~R!#21%

1E drE dv

4p
rN~r ,v!$ ln@LN

3 rN~r ,v!#21%, ~2!

whereLP andLN are the thermal wavelengths for polyme
and needles, respectively. The total bonding potentialVb(R)
is a sum of bonding potentialsvb between the segment
Vb(R)5( i 51

M21vb(ur i 112r i u) and for the tangential hard
spheres this contribution satisfies exp@2bVb(R)#
5) i 51

M21d(ur i 112r i u2s)/4ps2.
Within the framework of the fundamental measure the

the excess free energy densityF is expressed as a simp
function of the weighted densitiesna

( i ) . We assume thatF
can be represented as a sum of the orientation-indepen
polymer contribution,FPOL , and the orientation-depende
polymer-needle contribution,FPN . For the orientation-
independent contribution we use an extension of Rosenfe
FMT to the polymeric fluids@13#, where the polymer exces
free energy densityFPOL is assumed to be a functional o
only segment densitiesrPS(r ) defined as

rPS~r !5(
i 51

M

rPS,i~r !5(
i 51

M E dRd~r2r i !rP~R!, ~3!

whererPS,i(r ) is the local density of the segmenti of the
polymer. Following Ref.@13# we assume thatFPOL can be
split into the hard-sphereFHS contribution resulting from the
hard-sphere repulsion of polymer segments andFP contri-
bution arising due to the chain connectivity. Taking into a
count the assumptions mentioned above we haveF5FPN
1FHS1FP . The total excess free energy of the inhomog
neous system is obtained via the integration of the exc
free energy density

bFex5E drE dv

4p
FPN~$na

( i )%!1FHS~$na
(P)%!

1FP~$na
(P)%!. ~4!

For the hard-sphere partFHS we choose the origina
Rosenfeld expression@14#

FHS~$na
(P)%!52n0

(P)ln~12n3
(P)!1

n1
(P)n2

(P)2nV1
(P)

•nV2
(P)

12n3
(P)

1
~n2

(P)!323n2
(P)nV2

(P)
•nV2

(P)

24p~12n3
(P)!2

. ~5!

The polymer weighted densitiesna
(P)(r ) are evaluated via

spatial convolutions

na
(P)~r !5E dr 8rPS~r 8!wa

(P)~r2r 8!, ~6!

where the weight functionswa
(P)(r ) are given by
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(P)~r !5QS s

2
2ur u D , w2

(P)~r !5dS s

2
2ur u D , ~7!

wV2
(P)~r !5

r

ur u
dS s

2
2ur u D , w1

(P)~r !5
w2

(P)~r !

2ps
, ~8!

w0
(P)~r !5

w2
(P)~r !

ps2
, wV1

(P)~r !5
wV2

(P)~r !

2ps
. ~9!

The contribution due to the chain connectivity is evalua
using Wertheim’s first-order perturbation theory for a bu
fluid @15# and extended~using FMT-style weighted densities!
by Yu and Wu to inhomogeneous systems@13#

FP~$na
(P)%!5

12M

M
n0

Pz ln@yhs~s,$na
(P)%!#, ~10!

wherez512nV2
(P)

•nV2
(P)/(n2

(P))2, while yhs is connected with
the Carnahan-Starling expression for the contact value of
radial distribution function of a hard-sphere mixture,

yhs~s,$na
(P)%!5

1

12n3
(P)

1
n2

(P)sz

4~12n3
(P)!2

1
~n2

(P)!2s2z

72~12n3
(P)!3

.

~11!

We note here that bothFHS andFP are independent on th
local density of rods.

To specify the polymer-needle contribution we make u
of Schmidt’s DFT for hard-rod–hard-sphere mixtures@11#
and write the excess free energy density due to vanishin
thin needles as

FPN~$na
( i )%!52n0

(N)ln~12n3
(P)!1

n1
(N)n2

(PN)

12n3
(P)

. ~12!

The equation above implies that the polymer-needle con
bution to the excess free energy stems solely from the h
core repulsion between the needle and the hard sphere f
ing the polymer segment.

The needle weighted densities,na
(N) , are obtained through

spatial convolutions of the needle local density and the c
responding orientation-dependent weight functions

na
(N)~r ,v!5E dr 8rN~r 8,v!wa

(N)~r2r 8,v!, a50,1,

~13!

while the ‘‘mixed’’ polymer segment-needle weighted de
sity, n2

(PN) , is obtained via spatial convolution of the poly
mer segment density and an orientation-dependent we
function

n2
(PN)~r ,v!5E dr 8rPS~r 8!w2

(PN)~r2r 8,v!. ~14!

Corresponding weight functions are given as@11#
1-2
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w1
(N)~r ,v!5

1

4E2L/2

L/2

dld~r1vl !,

w0
(N)~r ,v!5 1

2 @d~r1vl !1d~r2vl !#,

w2
(PN)~r ,v!52uwV2

(P)~r !•vu. ~15!

This completes the prescription for the functional. T
present theory reduces to Schmidt’s functional@11# if M
51 and to Yu and Wu functional@13# if the density of rods
rN50. Also note that, similar to Ref.@11#, the functional is
linear in the local density of rods.

Although the proposed DFT is intrinsically designed
study inhomogeneous systems, here we restrict ourselve
the isotropic bulk phases where the density of both spe
are constant. In this case the scalar weighted densities
come proportional to the bulk densities of needles and p
mers, while the vector weighted densities vanish. Con
quently from Eq.~6! we obtainna

(P)5ja
(P)MrP5ja

(P)rPS,
with j3

(P)5p/6s3, j2
(P)5ps2, j1

(P)5s/2, and j0
(P)51.

Likewise Eq.~13! yieldsna
(N)5ja

(N)rN, wherej1
(N)5L/4 and

j0
(N)51. Finally Eq.~14! leads ton2

(PN)5j2
(P)rPS. After in-

serting the above expressions for the weighted densities
the Eq.~5! and Eqs.~10!–~12! the total free energy per un
volume, Fv , is evaluated as Fv5FHS1FP1FPN

1b21rP@ ln(rPLP
3)21#1b21rN@ln(rNLN

3)21#. From Fv the
pressurep and the chemical potentials of both species
easily calculated

FIG. 1. Phase diagrams for hard-rod–polymer mixtures. S
and dashed lines denote the binodals and spinodals, respect
Black circles indicate the critical points of a demixing transitio
The main plot shows phase diagram for a mixture of hard rods w
size ratioq5L/s51 and hard-sphere 10-mers, in terms of polym
packing fraction hP5

p
6 s3MrP and the scaled needle densi

rNL2s. Open diamonds denote the critical points for a mixture
hard-sphere 10-mers and hard rods with size ratiosq520,15,8,5,
and 0.1~from top to bottom!. The inset shows the polymer packin
fraction-scaled needle reservoir density representation of the p
diagrams for a mixture of hard rods with size ratioq51 and poly-
mers withM51,10, and 100~from top to bottom!.
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bp52Fv1 (
j 5P,N

r j

]Fv

]r j
, bm j5

]Fv

]r j
. ~16!

Under appropriate conditions a mixture of polymers and h
rods undergoes entropically driven demixing transition
polymer-rich~rod-poor! and polymer-poor~rod-rich! phases.
The coexsisting equilibrium densities~binodals! were ob-
tained by solving simultaneously equations for the equa
of pressures and chemical potentials in two phases. The s
odals delimiting the regions stable against fluctuations
density and composition were evaluated from the condit
det@]2Fv /]r i]r j #50, i , j 5P,N. The critical points were
evaluated from

s3
]3Fv

]rP
3

13s2
]3Fv

]rP
2]rN

13s
]3Fv

]rP]rN
2

1
]3Fv

]rN
3

50,

s[
2]2Fv

]rP]rN
Y ]2Fv

]rP
2

. ~17!

The above equation arises from the fact that at the crit
point the tie-line connecting the coexisting densities becom
tangent to the spinodal line@17#.

In Fig. 1 we show examples of binodals~solid lines!,
spinodals~dashed lines! and critical points~black circles!
resulting from the present theory. The phase diagrams plo

in the polymer packing fraction,hP5
p

6
s3MrP versus

scaled needle reservoir density,rN
(r )L2s representation~see

d
ely.

h
r

f

se

FIG. 2. The phase diagram for a hard-rod–hard-sphere mo
mer (M51) mixture with the size ratioq51. Solid and dashed
lines denote the binodal and the spinodal, respectively. Black
monds on the spinodal indicate the critical points of a demix
transition for monomer–hard-rod mixtures with different size rat
q58, 5, 1 and 0.4~from top to bottom!. Open diamonds denote th
critical points of a demixing transition for a mixture of polyme
consisting ofM monomers and hard rods for fixedq and for M
52, 5, 20, 100, and 10 000~starting from the right-hand side!.
Dotted lines serve as a guide to the eye and connect the cri
points for the systems with the same size ratioq.
1-3
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the inset! were evaluated for systems withM51,10,100 for
constantq5L/s51. For the special caseM51 ~the upper-
most diagram! the system reduces to the BF model@16#.

As the chain length is increased, the phase boundary
comes more asymmetric and the critical point moves towa
lower polymer packing fractions and towards lower reserv
needle densities. Another interesting feature observed in
@11# is that when the polymer packing fraction-actualneedle
density representation instead of the polymer pack
fraction-reservoir needle density representation is chos
the critical points for different size ratiosq are located on the
spinodal of the system withq51. We find the same behavio
also in the present model, i.e., forM.1. In the main plot of
Fig. 1 we show phase diagram for a mixture of 10-mers a
hard rods. The critical points for mixtures with different si
ratios~open diamonds, from top to bottom forq520, 15, 8,
5, and 0.1! lie on the spinodal for the system withq51
~dashed line!.

Let us now consider the limit of very long polyme
chains. Intuitively one could argue that in this regime t
phase behavior of a needle-polymer mixture should ba
depend on the rod length to polymer-segment diameter r
q5L/s because the physical dimensions of the polym
e.g., the gyration radiusRg become much bigger than the ro
elongation. This scenario is captured within the pres
theory. In Fig. 2 we show the phase diagram for a mixture
hard-sphere monomers (M51) and hard rods for the siz
ratio q51. The critical points for different size ratiosq
~black diamonds! are located on the spinodal. Open di
monds denote the critical points for the systems withM
ce
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52, 5, 20, 100, and 10 000, respectively. As the chain len
increases the critical points for the systems with differe
size ratios but the sameM come closer together and forM
510 000 they virtually merge~on the figure scale! into one
point. In the limit M→` the critical scaled needle densit
tends to the value 2.5526 for allq while the critical polymer
packing fraction tends to zero. Similar limiting behavior w
found in mixtures of spherical colloids and polymers wi
excluded volume interactions@18–20#.

In conclusion, in this work we propose a DFT for a mi
ture of vanishingly thin hard rods and polymers modeled
chains built of hard tangent spheres. The functional is c
structed by combining the functional due to Yu and Wu f
polymer mixtures@13# with Schmidt’s functional for hard-
rod–hard-sphere mixtures@11#. The proposed theory predict
a demixing transition similar in its nature to that observed
sphere-rod systems. The present functional is well suite
study inhomogeneous systems. It would be of interest to c
sider a fluid-fluid interface or to investigate surface pha
transitions such as entropic wetting or layering that ha
been discovered in colloid-polymer and colloid-rod mixture
It is also straightforward to incorporate the Onsager lim
@21# of the needle contribution to the functional thus gen
ating a more sophisticated model of inhomogeneous liq
crystal-polymer mixtures. Some of these topics are alre
under study in our laboratory.
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