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Density functional theory and demixing of binary hard-rod—polymer mixtures
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A density functional theory for a mixture of hard rods and polymers modeled as chains built of hard tangent
spheres is proposed by combining the functional due to Yu and Wu for the polymer mikiu@sem. Phys.
117, 2368(2002] with Schmidt’s functiona[Phys. Rev. B63, 50 201(2001)] for rod-sphere mixtures. As a
simple application of the functional, the demixing transition into polymer-rich and rod-rich phases is examined.
When the chain length increases, the phase boundary broadens and the critical packing fraction decreases. The
shift of the critical point of a demixing transition is most noticeable for short chains.
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The addition of the nonadsorbing polymer to a monodis- The aim of the present work is to construct a functional
perse suspension of colloidal particles can lead to a phader a mixture of vanishingly thin hard rods and polymers.
separation due to depletion interactioii§ arising from a  Such systems can be regarded as simple microscopic models
tendency of the system to reduce the volume excluded to thef the liquid crystal-polymer mixtures. The functional is con-
polymer coils. One of the simplest theoretical models takingstructed by combining Schmidt's functional for the BF
into account this phenomenon is the so-called Asakuratodel with the Yu and Wy13] functional for mixtures of
Oosawa(AO) model of colloid-polymer mixturef2] where polymeric fluids. To make this (_:onjecture we take the advan-
the ideal polymer coil§modeled as spheresan freely in- tage of the fact that both functionals underlie the fu_ndamen-
terpenetrate each other but the polymer-colioid and colloid®! Mmeasure theoryFMT) of Rosenfeld[14]. As a simple

colloid interactions are of the hard sphere type. Initial studie pp|iCﬁti0n we ir:jvehstigate bulk phase diagrams resulting
of such systems focused on the bulk phase behddidi, rom the proposed theory.

. . Consider a mixture of hard, vanishingly thin needigse-
however recently developed density functional the@iFT) . .
for the AO model[5] initiated investigations of inhomoge- ciesN) of lengthL and polymersispeciesP) modeled as

chains composed fronM tangentially bonded hard-sphere

neous coIIoid—ponmer mixtures. When brought close to.asegments of diameter. The hard-sphere monomers build-
hard wall, such mixtures may develop a sequence of Iayennghg up the chains are freely jointed, i.e., they can adopt any

transitions in the. partial wetting regime prior to a transition configuration as long as it is free of the intermolecular and
to complete wetting6,7. _ intramolecular overlap. The interaction potential between
Similar mechanism of fluid-fluid phase separation can bggedlesy, =0 for all separations, while the pair potential
found if other mesoscopic particles such as hard rods argetween a polymer segment and a hard Mg, and be-
used as depletant agents. Bolhuis and Fre(lBE) [8] used  tween two polymer segment¥,p, is of a hard-core type,
computer simulations and free volume the¢d} to study e s infinite if a pair of objects overlap and zero otherwise.
bulk phase behavior of mixtures of colloidal hard spheresthe grand potential of such system as a functional of local
and vanishingly thin hard rods. They found a surprisinglydensities of polymergp(R) and needlegpy(r,w) can be
good agreemen(cf Fig. 3 in Ref.[8]) between the free vol- written as
ume theory and Gibbs ensemble Monte Carlo simulations.
Although the vanishing thickness and volume constitute a

significant simplification(e.g., it rules out the isotropic- Q[pp(R),pn(r, @)]

nematic transitiop the BF model is relevant for some ex-

perimental systems, e.g., mixtures of silica spheres and silica ~ =Fialpp(R),pn(r @) ]+ Fel pp(R), pn(r, @) ]
coated bohemite rod9,10]. In order to describe inhomoge-

neous hard-rod—hard-sphere systems Schiiijtproposed +f dRPP[(R)(Vg)t(R)—MP)]

a DFT which in its structure closely resembles the AO func-

tional [5]. The functional for the BF model incorporates the de

exact low-density limit and yields the same equation of state +f drf Ep,\,(r,w)[vg;ﬂ{(r,w)—u,q], @

as in Ref.[8]. Moreover, entropic surface phase transitions

found previously in model colloid-polymer mixtures close to

a hard wall were also recently encountered in hard-rod—hard-

sphere mixture$12]. This further demonstrates deep simi- whereR=(r,r,,---,ry) denotes a set of coordinates de-

larities between the two models. scribing the segment positions,describes the orientation of
the rod, VO(R), up, VO(r,w) and uy are the external
and the chemical potentials for polymers and rods, respec-

*Electronic address: pawel@paco.umcs.lublin.pl tively. The ideal part of the free energy is known exactly
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whereAp and A are the thermal wavelengths for polymers WgP)(r):WZ (r)’ M/Fi) _W( (r). (9)
and needles, respectively. The total bonding poteMi&R) mo? 270

is a sum of bonding potentials,, between the segments

Vb(R):Ei'\A:]lvb(“wl—riD and for the tangential hard The contribution due to the chain connectivity is evaluated

spheres this  contribution satisfies  ExpBVy(R)] us!ng Wertheim’s first—order perturbation Fheory for a bulk
8(|ri 11| — o) lAmo?. fluid [15] and extendedusing FMT-style weighted densities

W|th|n the framework of the fundamental measure theoryPy YU and Wu to inhomogeneous systefi3]
the excess free energy densily is expressed as a simple
function of the weighted densities!!) . We assume thab Py —
a - TV O=S T Pp({ng )=

can be represented as a sum of the orientation-independent

polymer contribution®p, , and the orientation-dependent ) 0102, whi _ _

polymer-needle contribution®py. For the orientation- Wherel=1-ny;'-nyz/(n; )%, while y,sis connected with

independent contribution we use an extension of Rosenfeld®e Carnahan- Starling expression for the contact value of the

FMT to the polymeric fluid§13], where the polymer excess radial distribution function of a hard-sphere mixture,

free energy densitypp5, is assumed to be a functional of

M ngdInfyns(o {nH1,  (10)

only segment densitigsp(r) defined as ) 1 no¢ (n)20%¢
Yas(o{ny '} = (p)+ ®) 2T (P)\3"
M M 1-n{P  41-nP)2 " 72(1-nP)
pes =2 ppsi(=2, f dR3(r—r)pp(R), (3 (19

, i ) We note here that botth 5 and® are independent on the
where ppg(r) is the local density of the segmenbf the  |ocq| density of rods.
polymer. Following Ref{13] we assume thabpo, can be To specify the polymer-needle contribution we make use
splitinto the hard-spher®y,s contribution resulting from the 4t Schmidt's DFT for hard-rod—hard-sphere mixtufdd]

hard-sphere repulsion of polymer segments dndcontri-  5nd write the excess free energy density due to vanishingly
bution arising due to the chain connectivity. Taking into ac-thin needles as

count the assumptions mentioned above we hawed

+®dystPp. The total excess free energy of the inhomoge- NN (PN)
neous system is obtained via the integration of the excess O () ==nMin(1—nP) + ———.
free energy density 1-n§)

(12

B o i P The equation above implies that the polymer-needle contri-
BFEX_f drf EqDPN({n(a)})Jrq)HS({n(a ) bution to the excess free energy stems solely from the hard-
core repulsion between the needle and the hard sphere form-
+®p({n}). (4 ing the polymer segment.
The needle weighted densitieg") , are obtained through
spatial convolutions of the needle local density and the cor-
responding orientation-dependent weight functions

For the hard-sphere parPys we choose the original
Rosenfeld expressiqgri4]

P11 — nPin(1— Py + "2~ V20V
Pus({ny 'H=—ngy In(1—ng"”)+ 1-n{ n(aN)(r,w)Zfdr’PN(r’,w)W(aN)(r—r’,w), a=0,1,
(13

2477(1 n(P))z ' ) while the “mixed” polymer segment-needle weighted den-

sity, n"™ | is obtained via spatial convolution of the poly-
The polymer weighted densities”)(r) are evaluated via Mer segment density and an orientation-dependent weight
spatial convolutions function
n&F’)(r):f dr’ pps(r )W (r=r"), (©) n(;’“)(r,w>=j dr’ pos(r )i (r=r"\@). (14
where the weight functionwff)(r) are given by Corresponding weight functions are given[a§]
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FIG. 1. Phase diagrams for hard-rod—polymer mixtures. Solid FIG. 2. The phase diagram for a hard-rod—hard-sphere mono-
and dashed lines denote the binodals and spinodals, respectiveijer (M =1) mixture with the size rati@j=1. Solid and dashed
Black circles indicate the critical points of a demixing transition. lines denote the binodal and the spinodal, respectively. Black dia-
The main plot shows phase diagram for a mixture of hard rods wittmonds on the spinodal indicate the critical points of a demixing
size ratiog=L/o=1 and hard-sphere 10-mers, in terms of polymertransition for monomer—hard-rod mixtures with different size ratios
packing fraction np=% o3Mpp and the scaled needle density q=8, 5, 1 and 0.4from top to botton). Open diamonds denote the
pnL20. Open diamonds denote the critical points for a mixture ofcritical points of a demixing transition for a mixture of polymers
hard-sphere 10-mers and hard rods with size ratie®0,15,8,5, consisting ofM monomers and hard rods for fixefdand for M
and 0.1(from top to botton). The inset shows the polymer packing =2, 5, 20, 100, and 10 00(starting from the right-hand sigle
fraction-scaled needle reservoir density representation of the phag#otted lines serve as a guide to the eye and connect the critical
diagrams for a mixture of hard rods with size ratje1 and poly-  points for the systems with the same size ratio
mers withM =1,10, and 10Gfrom top to botton.

L2 Bp:_®u+_2 Pj
dIs(r+wl), 1=P.N
L/2

L]
Buj= 3

D,
ﬁpJ '

v

1 L. (1)
W(lN)(r,w)ZZf J
Under appropriate conditions a mixture of polymers and hard
rods undergoes entropically driven demixing transition to
polymer-rich(rod-poo) and polymer-poofrod-rich) phases.
The coexsisting equilibrium densitigbinodalg were ob-
wiN(r, @) =2/ (1) . (15  tained by solving simultaneously equations for the equality
of pressures and chemical potentials in two phases. The spin-
This completes the prescription for the functional. Theodals delimiting the regions stable against fluctuations of
present theory reduces to Schmidt's functiopal] if M density and composition were evaluated from the condition
—1 and to Yu and Wu functiondlL3] if the density of rods defd°®,/dp;dp;]1=0, i,j=P,N. The critical points were
pn=0. Also note that, similar to Ref11], the functional is €valuated from
linear in the local density of rods.

wiV(r,w)=3[8(r+ wl)+ 8(r—ol)],

Although the proposed DFT is intrinsically designed to LD, , 30, P;b,  Fd,
study inhomogeneous systems, here we restrict ourselves to S 903 +3s 9029 +3S(7 902 * 903 =0,
the isotropic bulk phases where the density of both species Pp PpoPN PPOPN - 9PN
are constant. In this case the scalar weighted densities be- 5 5
come proportional to the bulk densities of needles and poly- = -, / D, 17
mers, while the vector weighted densities vanish. Conse- dppdpn aps

quently from Eq.(6) we obtainn{™ =¢PIMpp= &P ppg,

with e =160, ¢)=nc? ¢P=0/2, and €7'=1.  The above equation arises from the fact that at the critical
Likewise Eq.(13) yieldsn{MV=¢MNp whereg{=1/4 and  point the tie-line connecting the coexisting densities becomes
¢éNV=1. Finally Eq.(14) leads tonS"™ =& p.s. After in-  tangent to the spinodal line.7].

serting the above expressions for the weighted densities into In Fig. 1 we show examples of binodafsolid lines,

the Eq.(5) and Eqs(10)—(12) the total free energy per unit Spinodals(dashed lingsand critical points(black circles
volume, ®,, is evaluated as®,=®dygt+Dp+Ppy resulting from the present theory. The phase diagrams plotted

+ B ppIN(ppAR) 11+ B pN[IN(pnAR) —1]. From @, the . ; : _T 3
pressurep and the chemical potentials of both species areIn the polymer packing fraction.,p= 67 Mpp versus
easily calculated scaled needle reservoir densipf’L %o representatiorisee
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the inset were evaluated for systems witi=1,10,100 for =2, 5, 20, 100, and 10 000, respectively. As the chain length
constantg=L/o=1. For the special cadd =1 (the upper- increases the critical points for the systems with different
most diagramthe system reduces to the BF mogi&b]. size ratios but the samd come closer together and fof

As the chain length is increased, the phase boundary be=10000 they virtually mergéon the figure scaleinto one
comes more asymmetric and the critical point moves towardgoint. In the limit M —c the critical scaled needle density
lower polymer packing fractions and towards lower reservoifiends to the value 2.5526 for allwhile the critical polymer
needle densities. Another interesting feature observed in Rebacking fraction tends to zero. Similar limiting behavior was
[11]is that when the polymer packing fractiaetualneedle ¢4 ng in mixtures of spherical colloids and polymers with

density representation instead of the polymer paCki”%xcluded volume interactiofd8—20
fractionteservoir needle density representation is chosen, In conclusion. in this work we pr;)pose a DET for a mix-

the_ cr(ijticialfp?]ints for diffe_rerltlsizve;/ra;'_[ia(far:e Iocate(g Or? the ture of vanishingly thin hard rods and polymers modeled as
spinodal of the system witg=1. We find the same behavior chains built of hard tangent spheres. The functional is con-

a[so in the present mOd?" .e., r>1. In the main plot of g4\ req by combining the functional due to Yu and Wu for
Fig. 1 we show p_h_ase dlggram for_a mixture of _10-mers _an(zolymer mixtures[13] with Schmidt's functional for hard-
hard rods. Thg critical points for mixtures with different size rod—hard-sphere mixturé$1]. The proposed theory predicts
ratios (open Q|amonds, frqm top to bottom fqr=20, _15’ 8 a demixing transition similar in its nature to that observed for
5, and 0.1 lie on the spinodal for the system wili=1  gyhere rod systems. The present functional is well suited to
(dashed ling . - study inhomogeneous systems. It would be of interest to con-
Let us now consider the limit of very long polymer giqer 4 fluid-fluid interface or to investigate surface phase
chains. Intum'vely one could argue that_ in this regime they,nsitions such as entropic wetting or layering that have
phase behavior of a needle-polymer mixture should barelyeep, giscovered in colloid-polymer and colloid-rod mixtures.
depend on the rod length to polymer-segment diameter ratig j5 550 straightforward to incorporate the Onsager limit

q=L/o because the physical dimensions of the polymer;;1] of the needle contribution to the functional thus gener-
e.g., the gyration radiug, become much bigger than the rod 4ing a more sophisticated model of inhomogeneous liquid

elongation. This scenario is captured within the presentycia)polymer mixtures. Some of these topics are already
theory. In Fig. 2 we show the phase diagram for a mixture of,1qer study in our laboratory.

hard-sphere monomerd(=1) and hard rods for the size

ratio q=1. The critical points for different size ratiog This work has been supported by KBN of Poland under
(black diamondg are located on the spinodal. Open dia-the Grant “Wptyw samoorganizacji nawmowagi fazowe w
monds denote the critical points for the systems wih  plynach zioonych.”
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